Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.847
Filtrar
1.
Clin Oral Investig ; 28(6): 311, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743171

RESUMO

OBJECTIVE: This study used image-based finite element analysis (FEA) to assess the biomechanical changes in mandibular first molars resulting from alterations in the position of the root canal isthmus. METHODS: A healthy mandibular first molar, characterized by two intact root canals and a cavity-free surface, was selected as the subject. A three-dimensional model for the molar was established using scanned images of the patient's mandibular teeth. Subsequently, four distinct finite element models were created, each representing varied root canal morphologies: non-isthmus (Group A), isthmus located at the upper 1/3 of the root (Group B), middle 1/3 of the root (Group C), and lower 1/3 of the root (Group D). A static load of 200 N was applied along the tooth's longitudinal axis on the occlusal surface to simulate regular chewing forces. The biomechanical assessment was conducted regarding the mechanical stress profile within the root dentin. The equivalent stress (Von Mises stress) was used to assess the biomechanical features of mandibular teeth under mechanical loading. RESULTS: In Group A (without an isthmus), the maximum stress was 22.2 MPa, while experimental groups with an isthmus exhibited higher stresses, reaching up to 29.4 MPa. All maximum stresses were concentrated near the apical foramen. The presence of the isthmus modified the stress distribution in the dentin wall of the tooth canal. Notably, dentin stresses at specific locations demonstrated differences: at 8 mm from the root tip, Group B: 13.6 MPa vs. Group A: 11.4 MPa; at 3 mm from the root tip, Group C: 14.2 MPa vs. Group A: 4.5 MPa; at 1 mm from the root tip, Group D: 25.1 MPa vs. Group A: 10.3 MPa. The maximum stress in the root canal dentin within the isthmus region was located either at the top or bottom of the isthmus. CONCLUSION: A root canal isthmus modifies the stress profile within the dentin. The maximum stress occurs near the apical foramen and significantly increases when the isthmus is located closer to the apical foramina.


Assuntos
Cavidade Pulpar , Análise do Estresse Dentário , Análise de Elementos Finitos , Mandíbula , Dente Molar , Humanos , Fenômenos Biomecânicos , Cavidade Pulpar/anatomia & histologia , Análise do Estresse Dentário/métodos , Imageamento Tridimensional/métodos , Estresse Mecânico
2.
BMC Oral Health ; 24(1): 455, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622680

RESUMO

BACKGROUND: The aim of this study is to evaluate the biomechanical behavior of the mesial and distal off-axial extensions of implant-retained prostheses in the posterior maxilla with different prosthetic materials using finite element analysis (FEA). METHODS: Three dimensional (3D) finite element models with three implant configurations and prosthetic designs (fixed-fixed, mesial cantilever, and distal cantilever) were designed and modelled depending upon cone beam computed tomography (CBCT) images of an intact maxilla of an anonymous patient. Implant prostheses with two materials; Monolithic zirconia (Zr) and polyetherketoneketone (PEKK) were also modeled .The 3D modeling software Mimics Innovation Suite (Mimics 14.0 / 3-matic 7.01; Materialise, Leuven, Belgium) was used. All the models were imported into the FE package Marc/Mentat (ver. 2015; MSC Software, Los Angeles, Calif). Then, individual models were subjected to separate axial loads of 300 N. Von mises stress values were computed for the prostheses, implants, and bone under axial loading. RESULTS: The highest von Mises stresses in implant (111.6 MPa) and bone (100.0 MPa) were recorded in distal cantilever model with PEKK material, while the lowest values in implant (48.9 MPa) and bone (19.6 MPa) were displayed in fixed fixed model with zirconia material. The distal cantilever model with zirconia material yielded the most elevated levels of von Mises stresses within the prosthesis (105 MPa), while the least stresses in prosthesis (35.4 MPa) were recorded in fixed fixed models with PEKK material. CONCLUSIONS: In the light of this study, the combination of fixed fixed implant prosthesis without cantilever using a rigid zirconia material exhibits better biomechanical behavior and stress distribution around bone and implants. As a prosthetic material, low elastic modulus PEKK transmitted more stress to implants and surrounding bone especially with distal cantilever.


Assuntos
Implantes Dentários , Zircônio , Humanos , Análise de Elementos Finitos , Maxila/cirurgia , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário/métodos , Estresse Mecânico
3.
J Oral Implantol ; 50(1): 45-49, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579112

RESUMO

The stability of implant-abutment joint is fundamental for the long-term success of implant rehabilitation. The screw loosening, fracture, and head deformation are among the most common mechanical complications. Several surface treatments of titanium screws have been proposed to improve their resistance and stability. Diamond-like carbon (DLC) coating of the materials is widely used to increase their wear resistance and durability. The present study aimed to evaluate the effect of carbon fiber coating on the screw head on screw removal torque and screw head stripping. One hundred titanium implant screws were used, 50 without coating (Group 1) and 50 with DLC coating of the screw head (Group 2). Each screw was tightened with a torque of 25 Ncm and unscrewed 10 times. The removal torque was measured with a digital cap torque tester for each loosening. Optical 3d measurement of the screw head surface was performed by a fully automatic machine before and after multiple tightening to investigate surface modifications. The reverse torque values decreased with repeated tightening and loosening cycles in both groups without significant differences (P > .05). Optical measurements of surface dimensions revealed average changes of 0.0357 mm in Group 1 and 0.02312 mm in Group 2, which resulted to be statistically significant (P < .001). The DLC coating of the retention screw head can prevent its distortion and wear, especially after multiple tightening.


Assuntos
Implantes Dentários , Carbono , Titânio , Análise do Estresse Dentário/métodos , Torque , Parafusos Ósseos , Dente Suporte
4.
BMC Oral Health ; 24(1): 425, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582842

RESUMO

BACKGROUND: Clinical scenarios frequently present challenges when patients exhibit asymmetrical mandibular atrophy. The dilemma arises: should we adhere to the conventional All-on-4 technique, or should we contemplate placing vertically oriented implants on the side with sufficient bone mass? This study aims to employ three-dimensional finite element analysis to simulate and explore the biomechanical advantages of each approach. METHODS: A finite element model, derived from computed tomography (CT) data, was utilized to simulate the nonhomogeneous features of the mandible. Three configurations-All-on-4, All-on-5-v and All-on-5-o were studied. Vertical and oblique forces of 200 N were applied unilaterally, and vertical force of 100 N was applied anteriorly to simulate different masticatory mechanisms. The maximum von Mises stresses on the implant and framework were recorded, as well as the maximum equivalent strain in the peri-implant bone. RESULTS: The maximum stress values for all designs were located at the neck of the distal implant, and the maximum strains in the bone tissue were located around the distal implant. The All-on-5-o and All-on-5-v models exhibited reduced stresses and strains compared to All-on-4, highlighting the potential benefits of the additional implant. There were no considerable differences in stresses and strains between the All-on-5-o and All-on-5-v groups. CONCLUSIONS: With the presence of adequate bone volume on one side and severe atrophy of the contralateral bone, while the "All-on-4 concept" is a viable approach, vertical implant placement optimizes the transfer of forces between components and tissues.


Assuntos
Implantes Dentários , Humanos , Fenômenos Biomecânicos , Análise de Elementos Finitos , Estresse Mecânico , Análise do Estresse Dentário/métodos , Prótese Dentária Fixada por Implante , Mandíbula/diagnóstico por imagem , Atrofia
5.
BMC Oral Health ; 24(1): 331, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481220

RESUMO

BACKGROUND: The aim of this study is to investigate, through finite element analysis (FEA), the biomechanical behavior of the built-in angle corrected dental implant versus implant with angled multiunit abutment used in All-On-Four treatment protocol. METHODS: Two (3D) finite element models of a simplified edentulous mandible were constructed with two different posterior implant designs based on the All-On-Four protocol. Four implants were placed in each model, the two anterior implants were positioned vertically at the lateral incisor/canine sites. Depending on the implant fixture design in posterior area, there are two models created; Model I; the mandible was rehabilitated with four co-axis (4 mm in diameter × 15 mm in length) implants with distally built-in angle corrected implants (24-degree angle correction) .While Model II, the mandible was rehabilitated with four conventional (4 mm in diameter × 14 mm in length) implants with a distally inclined posterior implants (25 degree) and angled multiunit abutments. CAD software (Solidworks© 2017; Dassault Systems Solidworks Corp) was used to model the desired geometry. Axial and inclined Loads were applied on the two models. A Finite element analysis study was done using an efficient software ANSYS© with specified materials. The resultant equivalent Von-Misses stresses (VMS), maximum principal stresses and deformation analysis were calculated for each part (implants and prosthetic components). RESULTS: When applying axial and non-axial forces, model II (angled multiunit model) showed higher deformation on the level of Ti mesh about 13.286 µm and higher VMS 246.68 MPa than model I (angle corrected implant). Model I exhibited higher maximum stresses 107.83 MPa than Model II 94.988 MPa but the difference was not statistically significant. CONCLUSION: Within the limitation of the FEA study, although angle correcting implant design is showing higher values in maximum principle stresses compared with angled multiunit abutments, model deformation and resultant VMS increased with angled multiunit abutments. The angle correcting designs at implant level have more promising results in terms of deformation and VMS distribution than angle correction at abutment level.


Assuntos
Implantes Dentários , Humanos , Análise de Elementos Finitos , Planejamento de Prótese Dentária , Simulação por Computador , Software , Estresse Mecânico , Análise do Estresse Dentário/métodos
6.
BMC Oral Health ; 24(1): 405, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555452

RESUMO

OBJECTIVE: To assess stress distribution in peri-implant bone and attachments of mandibular overdentures retained by small diameter implants, and to explore the impact of implant distribution on denture stability. METHODS: Through three-dimensional Finite Element Analysis (3D FEA), four models were established: three models of a two mandibular implants retained overdenture (IOD) and one model of a conventional complete denture (CD). The three IOD models consisted of one with two implants in the bilateral canine area, another with implants in the bilateral lateral incisor area, and the third with one implant in the canine area, and another in the lateral incisor area. Three types of loads were applied on the overdenture for each model: a 100 N vertical load and a inclined load on the left first molar, and a100N vertical load on the lower incisors. The stress distribution in the peri-implant bone, attachments, and the biomechanical behaviors of the overdentures were analyzed. RESULTS: Despite different distribution of implants, the maximum stress values in peri-implant bone remained within the physiological threshold for all models across three loading conditions. The dispersed implant distribution design (implant in the canine area) exhibited the highest maximum stress in peri-implant bone (822.8 µe) and the attachments (275 MPa) among the three IOD models. The CD model demonstrated highest peak pressure on mucosa under three loading conditions (0.8188 Mpa). The contact area between the denture and mucosa of the CD model was smaller than that in the IOD models under molar loading, yet it was larger in the CD model compared to the IOD model under anterior loading. However, the contact area between the denture and mucosa under anterior loading in all models was significantly smaller than those under molar loading. The IOD in all three models exhibited significantly less rotational movement than the complete denture. Different implant positions had minimal impact on the rotational movement of the IOD. CONCLUSION: IOD with implants in canine area exhibited the highest maximum stress in the peri-implant bone and attachments, and demonstrated increased rotational movement. The maximum principal stress was concentrated around the neck of the small diameter one-piece implant, rather than in the abutment. An overdenture retained by two implants showed better stability than a complete denture.


Assuntos
Implantes Dentários , Humanos , Revestimento de Dentadura , Análise de Elementos Finitos , Prótese Total , Mandíbula , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário/métodos , Retenção de Dentadura
7.
BMC Oral Health ; 24(1): 337, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491485

RESUMO

BACKGROUND: The selection of post-core material holds significant importance in endodontically treated teeth, influencing stress distribution in the dental structure after restoration. The use of computer-aided design/computer-aided manufacturing (CAD/CAM) glass fiber post-core possesses a better adaptation for different root canal morphologies, but whether this results in a more favorable stress distribution has not been clearly established. MATERIALS AND METHODS: This study employed finite element analysis to establish three models of post-core crown restoration with normal, oversized, and dumbbell-shaped root canals. The three models were restored using three different materials: CAD/CAM glass fiber post-core (CGF), prefabricated glass fiber post and resin core (PGF), and cobalt-chromium integrated metal post-core (Co-Cr), followed by zirconia crown restoration. A static load was applied and the maximum equivalent von Mises stress, maximum principal stress, stress distribution plots, and the peak of maximum displacement were calculated for dentin, post-core, crown, and the cement acting as the interface between the post-core and the dentin. RESULTS: In dentin of three different root canal morphology, it was observed that PGF exhibited the lowest von Mises stresses, while Co-Cr exhibited the highest ones under a static load. CGF showed similar stress distribution to that of Co-Cr, but the stresses were more homogeneous and concentrated apically. In oversized and dumbbell-shaped root canal remnants, the equivalent von Mises stress in the cement layer using CGF was significantly lower than that of PGF. CONCLUSIONS: In oversized root canals and dumbbell-shaped root canals, CGF has shown good performance for restoration of endodontically treated teeth. CLINICAL RELEVANCE: This study provides a theoretical basis for clinicians to select post-core materials for residual roots with different root canal morphologies and should help to reduce the occurrence of complications such as root fracture and post-core debonding.


Assuntos
Vidro , Técnica para Retentor Intrarradicular , Dente não Vital , Humanos , Coroas , Cimentos Dentários , Cimentos de Ionômeros de Vidro , Desenho Assistido por Computador , Análise do Estresse Dentário/métodos , Análise de Elementos Finitos , Resinas Compostas/química , Teste de Materiais , Estresse Mecânico
8.
BMC Oral Health ; 24(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166993

RESUMO

BACKGROUND: Dental implants can cause complications, including the loosening of the abutment screw or fracture. However, there is no standardized technique for removing broken abutment screws. This necessitates further research. OBJECTIVE: This study aimed to measure heat generation during screw removal to better understand its implications for dental implant procedures. MATERIAL AND METHODS: The experimental setup involved using synthetic bone blocks and titanium implants. An ultrasonically operated instrument tip was utilized for screw removal. Infrared thermometry was employed for accurate temperature measurement, considering factors such as emissivity and distance. Statistical analysis using linear regression and ANOVA was conducted. RESULTS: The findings revealed an initial rapid temperature increase during the removal process, followed by a gradual decrease. The regression model demonstrated a strong correlation between time and temperature, indicating the heat generation pattern. CONCLUSION: Heat generation during screw removal poses risks such as tissue damage and integration issues. Clinicians should minimize heat risks through an intermittent approach. The lack of a standardized technique requires further research and caution. Understanding the generated heat optimizes implant procedures.


Assuntos
Implantes Dentários , Temperatura Alta , Humanos , Ultrassom , Dente Suporte , Análise do Estresse Dentário/métodos , Torque , Implantes Dentários/efeitos adversos
9.
J Prosthodont ; 33(2): 180-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36799260

RESUMO

PURPOSE: To evaluate the tendency of movement, stress distribution, and microstrain of single-unit crowns in simulated cortical and trabecular bone, implants, and prosthetic components of narrow-diameter implants with different lengths placed at the crestal and subcrestal levels in the maxillary anterior region using 3D finite element analysis (FEA). MATERIALS AND METHODS: Six 3D models were simulated using Invesalius 3.0, Rhinoceros 4.0, and SolidWorks software. Each model simulated the right anterior maxillary region including a Morse taper implant of Ø2.9 mm with different lengths (7, 10, and 13 mm) placed at the crestal and subcrestal level and supporting a cement-retained monolithic single crown in the area of tooth 12. The FEA was performed using ANSYS 19.2. The simulated applied force was 178 N at 0°, 30°, and 60°. The results were analyzed using maps of displacement, von Mises (vM) stress, maximum principal stress, and microstrain. RESULTS: Models with implants at the subcrestal level showed greater displacement. vM stress increased in the implant and prosthetic components when implants were placed at the subcrestal level compared with the crestal level; the length of the implants had a low influence on the stress distribution. Higher stress and strain concentrations were observed in the cortical bone of the subcrestal placement, independent of implant length. Non-axial loading influenced the increased stress and strain in all the evaluated structures. CONCLUSIONS: Narrow-diameter implants positioned at the crestal level showed a more favorable biomechanical behavior for simulated cortical bone, implants, and prosthetic components. Implant length had a smaller influence on stress or strain distribution than the other variables.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Análise do Estresse Dentário/métodos , Planejamento de Prótese Dentária , Software , Estresse Mecânico , Fenômenos Biomecânicos
10.
J Prosthodont ; 33(4): 358-366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37114526

RESUMO

PURPOSE: To compare the fracture resistance and failure modes of anterior cantilever resin-bonded fixed partial dentures (RBFPDs) fabricated from high translucency zirconia with different intaglio surface treatments. MATERIALS AND METHODS: Sound-extracted canines (N = 50) were randomly divided into five groups (n = 10) to be restored with high translucency zirconia RBFBDs of different intaglio surface treatments. The RBFPD was designed using exocad software and fabricated using a CAM milling machine. The RBFPDs were treated differently: abrasion with 50 µm alumina particles (Group 1); abrasion with 30 µm silica-coated alumina particles (Group 2); abrasion with silica-coated alumina particles (30 µm) and silane application (Group 3); abrasion with silica-coated alumina particles (30 µm) and 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) primer application (Group 4); abrasion with silica-coated alumina particles (30 µm) and silane, and 10-MDP primer application. All RBFPDs were cemented using dual-cured resin cement. The RBFPDs underwent 6000 thermal cycles with distilled water at 5/55°C for 2 min per cycle and then mechanical cyclic loading with 1200,000 cycles of 50 N at a 1.7 Hz frequency at an angle of 135° to the abutment's long axis. Then, RBFPDs were loaded to fracture using a universal testing machine at 1 mm/min. Maximum fracture forces and failure modes were recorded. Fractured specimens and uncemented specimens were examined using a scanning electron microscope. Data was analyzed using ANOVA and Games-Howell post hoc tests at p < 0.05. RESULTS: Mean fracture load results showed a statistically significant difference between the research groups (p < 0.0001) and it ranged from 69.78 to 584 N. Group 4 exhibited the highest fracture load mean (p < 0.0001) which was significantly different from all other groups. Group 2 recorded a significantly higher fracture load mean than Group 3 (p = 0.029). Three modes of failure were observed: prosthesis debonding, prosthesis fracture, and abutment fracture. CONCLUSIONS: Abrasion of zirconia surface with 30 µm silica-coated alumina particles and application of 10-MDP primer yielded the highest mean fracture loads of monolithic high translucency zirconia RBFPD. The mode of fracture of the RBFPDs was influenced by the type of surface treatments.


Assuntos
Colagem Dentária , Prótese Adesiva , Metacrilatos , Resistência à Flexão , Silanos , Teste de Materiais , Cimentos de Resina , Zircônio , Dióxido de Silício , Óxido de Alumínio , Propriedades de Superfície , Análise do Estresse Dentário/métodos
11.
J Prosthodont ; 33(4): 367-373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37004216

RESUMO

PURPOSE: The aim of this study was to analyze the stress distribution of fiber-reinforced composite provisional fixed partial denture utilizing a finite element analysis model. MATERIAL AND METHODS: Three anterior teeth were collected: upper right central, left central, and right lateral incisors. A fiber-reinforced composite strip was applied to the palatal surfaces of the teeth. Micro-computed tomographic scans were acquired of the models in order to generate three-dimensional geometrical replicas. Finite element analysis was used to assess the stress distribution of fiber-reinforced composite provisional fixed partial denture using different pontic types under static applied forces that were 100, 30, and 0 N. RESULTS: The maximum stress values were found on the unprepared natural pontic. Stress values ranged from 92.2 to 909.8, 116.4 to 646.7, and 93.8 to 393.5 MPa for composite, naturally prepared, and natural unprepared pontic, respectively. CONCLUSIONS: Using unprepared natural tooth pontic in anterior provisional fixed partial denture to replace missing central incisors is considered superior to other types in terms of stress distribution.


Assuntos
Resinas Compostas , Planejamento de Dentadura , Análise de Elementos Finitos , Prótese Parcial Fixa , Análise do Estresse Dentário/métodos , Estresse Mecânico
12.
J Prosthodont ; 33(4): 348-357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37950537

RESUMO

PURPOSE: Single implant retained mandibular overdenture treatment has been shown to be a minimally invasive, satisfactory, and cost-effective option for edentulous individuals. However, the impact of implant diameter and length on stress distribution at the implant, bone, and other components in this treatment approach remains unclear. The purpose of this 3D finite element analysis was to evaluate the effect of implant length and diameter on equivalent von Mises stress and strain distribution in single implant retained overdentures at bone, implant, and prosthetic components. MATERIALS AND METHODS: Nine models were constructed according to implant lengths (L) (8, 10, 12 mm) and diameters (D) (3.3, 4.1, 4.8 mm). The implants were positioned axially, in the midline of the mandible. A 3D model of the edentulous mandible was created from a computed tomography image. A single implant, abutment with insert PEEK and a housing, acrylic denture, and Co-Cr framework were modeled separately. In the ANSYS software program, occlusal loads were applied as 150 N, bilaterally vertical direction, or unilaterally oblique direction to the first molar. Minimum principal stress values were evaluated for bone and equivalent von Mises stress and strain values were evaluated for implant and prosthetic components. RESULTS: Von Mises stress values for vertical load increased at implant, housing, and insert PEEK for all groups when the length of the implant increased. When oblique load was applied, 3.3 mm diameter implant groups showed maximum von Mises stress values for implants, cortical bone, cancellous bone, and housing among all groups. A minimum stress level for implant was found in D4.1/L8 group. Regarding the insert PEEK, strain values were found to be higher as the diameter of the implant increased both for vertical and oblique loads. Cortical bone showed higher minimum principal stress values as compared to cancellous bone under both loading conditions. CONCLUSIONS: The 3.3 mm diameter implant groups exhibited the highest von Mises stress and strain values for both loading conditions at the implant. The diameter of the implant had a greater impact on stress and strain levels at the implant site compared to length. For vertical loading, stress value increased at implant, housing, and PEEK when the length of the implant increased.


Assuntos
Benzofenonas , Implantes Dentários , Polímeros , Humanos , Revestimento de Dentadura , Análise de Elementos Finitos , Prótese Dentária Fixada por Implante , Mandíbula/cirurgia , Análise do Estresse Dentário/métodos , Estresse Mecânico , Fenômenos Biomecânicos
13.
J Prosthodont ; 33(3): 288-296, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36918484

RESUMO

PURPOSE: To assess the influence of bone types and loading patterns on the remodeling process over 12 months according to the variations in stress, strain, strain energy density (SED), and density allocation in the bone of implant-supported single crown. MATERIALS AND METHODS: A three-dimensional finite element of a single crown implant was modeled in five different bone types (D1-D4, and grafted bone). A 200 N load was applied on an implant crown with three occlusal loading patterns (nonfunctional contact, functional contact at center, and at 2-mm offset loading). During the first 12 months after implant placement, the SED was employed as a mechanical stimulus to simulate cortical and cancellous bone remodeling. RESULTS: Functional contact at 2-mm offset loading led to a higher bone remodeling rate and stress compared to functional contact at center and nonfunctional contact. Under 2-mm offset loading, the greatest remodeling rate after 12 months was achieved with D3 and D4, D2, grafted, and D1 cortical bone with an average peri-implant density of 1.95, 1.77, 1.56, and 1.50 g/cm3 , respectively. Meanwhile, the highest von Mises stresses were found in D4 (22.2 MPa) and D3 (21.9 MPa) bones. CONCLUSIONS: A greater stress concentration and remodeling rate were found when an off-axial load was applied on an implant placed in low bone density. Although the fastest remodeling processes resulting in increased bone density and strength were found in D3 and D4 bone types with greater off-axial loading that may provide greater bone engagement, it could increase stress concentrations that are susceptible to inducing implant failure.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Prótese Dentária Fixada por Implante , Estresse Mecânico , Coroas , Remodelação Óssea , Análise do Estresse Dentário/métodos
14.
Am J Orthod Dentofacial Orthop ; 165(1): 46-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37656069

RESUMO

INTRODUCTION: Different types of intraradicular restorations and their insertion have an impact on teeth biomechanics. This study aimed to analyze the biomechanical behavior of maxillary central incisors restored with glass fiber post (GFP) and cast metal post and core (CMP) subjected to buccolingual and mesiodistal orthodontic forces using the finite element method. METHODS: Two models of the maxillary central incisor with periodontal ligament, cortical bone, and trabecular bone were made. One of the models included intraradicular restoration with GFP, whereas, in the other, the incisor was restored with CMP. After creating the tridimensional mesh of finite elements, applying 2 orthodontic forces were simulated: 65 g of buccolingual force and 70 g of mesiodistal force. The forces were applied parallel to the palatal plane in the region of the bracket slot, located 4 mm to the incisal edge. RESULTS: The maximum stresses generated in the GFP-restored root were 3.642 × 10-1 MPa and 4.755 × 10-1 MPa from the buccolingual and mesiodistal forces, respectively. Likewise, the stresses in the CMP restored root were 2.777 × 10-1MPa and 3.826 × 10-1MPa. The radicular area with higher stress on both models was located in the cervical third: on the buccal surface when the buccolingual force was applied and on the mesial surface when the mesiodistal force was applied. The highest stress levels were found on the CMP structure. CONCLUSIONS: The incisor restored with cast metal post revealed lower stress values transferred to the root than the one restored with GFP. The stresses on the structure of the GFP were lower and more homogeneous than the ones found on the cast metal post. The difference among the stress values in the materials is within a safe margin for using both materials in relation to orthodontic forces.


Assuntos
Vidro , Incisivo , Humanos , Vidro/química , Fenômenos Mecânicos , Ligamento Periodontal , Análise de Elementos Finitos , Estresse Mecânico , Análise do Estresse Dentário/métodos
15.
Dent Mater ; 40(1): 9-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858421

RESUMO

OBJECTIVES: To determine the influence of different surface roughness and residual stress of hybrid surface implants on their behavior and mechanical failure. METHODS: Three types of implants with different surface roughness were used as specimens: smooth, rough, and hybrid. A diffractometer was used to determine the residual stress of the implants according to their different surface treatment. These results were used as an independent variable in a finite element analysis that compared the three specimens to determine the von Mises stress transferred to the implants and supporting bone and the resulting microdeformations. Flexural strength and fatigue behavior tests were performed to compare the results of the three types of implants. RESULTS: Higher residual stress values were found for rough surfaces (p < 0.05, Student's t-test) compared to smooth surfaces, and both types of stress were different for the two types of hybrid implant surfaces. Finite element analysis found different von Mises stress and microdeformation results, both at the level of the implant and the bone, for the three types of implants under study. These results were correlated with the different flexural strength behaviors (lower resistance for hybrids and higher for rough surfaces, p < 0.05) and fatigue behavior (the rough implant had the longest fatigue life, while the hybrid implant exhibited the worst fatigue behavior). SIGNIFICANCE: The results show a trend toward a less favorable mechanical behavior of the hybrid implants related to the retention of different residual stresses caused by the surface treatment.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Estresse Mecânico , Análise do Estresse Dentário/métodos
16.
Eur J Prosthodont Restor Dent ; 32(1): 102-108, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37812514

RESUMO

AIM: Evaluate the influence of occlusal loading on the stress distribution of endodontically treated teeth after root canal preparation with different file's sizes and tapers by means of finite element analysis. METHODOLOGY: Seven three-dimensional models of a single-rooted, single-canal lower second premolar were established, one healthy control and six endodontically treated and restored models. The shape of root canal preparations followed file configurations 30/.05, 30/.09, 35/.04, 35/.06, 40/.04, and 40/.06. Von- Mises equivalent stresses were calculated by applying 30 N, 90 N and 270 N loads to the buccal cusp tip, each one at 90º, 45º and 20º angles from the occlusal plane simulating occlusion, dental interference and laterality, respectively. RESULTS: 45º loading was more prone to formation of higher stress values. The simulation of occlusion and laterality resulted in maximum stress areas located at the inner side of the root curvature, while under occlusal interference they were on the lingual surface over the tooth's long axis. CONCLUSIONS: The angulation of occlusal loading and magnitude were determinants for stress distribution on dental structure. Both variations of size and taper were not determinants for the increase in the maximum stress areas.


Assuntos
Dente não Vital , Humanos , Dente não Vital/terapia , Análise de Elementos Finitos , Oclusão Dentária , Simulação por Computador , Preparo de Canal Radicular , Análise do Estresse Dentário/métodos , Estresse Mecânico
17.
J Prosthet Dent ; 131(1): 128.e1-128.e10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919129

RESUMO

STATEMENT OF PROBLEM: Accurate implant placement is essential for the success of dental implants. This placement influences osseointegration and occlusal forces. The freehand technique, despite its cost-effectiveness and time efficiency, may result in significant angular deviations compared with guided implantation, but the effect of angular deviations on the stress-strain state of peri-implant bone is unclear. PURPOSE: The purpose of this finite element analysis (FEA) study was to examine the effects of angular deviations on stress-strain states in peri-implant bone. MATERIAL AND METHODS: Computational modeling was used to investigate 4 different configurations of dental implant positions, each with 3 angles of insertion. The model was developed using computed tomography images, and typical mastication forces were considered. Strains were analyzed using the mechanostat hypothesis. RESULTS: The location of the implant had a significant impact on bone strain intensity. An angular deviation of ±5 degrees from the planned inclination did not significantly affect cancellous bone strains, which primarily support the implant. However, it had a substantial effect on strains in the cortical bone near the implant. Such deviations also significantly influenced implant stresses, especially when the support from the cortical bone was uneven or poorly localized. CONCLUSIONS: In extreme situations, angular deviations can lead to overstraining the cortical bone, risking implant failure from unfavorable interaction with the implant. Accurate implant placement is essential to mitigate these risks.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Análise do Estresse Dentário/métodos , Estresse Mecânico , Mandíbula/diagnóstico por imagem , Fenômenos Biomecânicos
18.
J Prosthet Dent ; 131(2): 281.e1-281.e9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985307

RESUMO

STATEMENT OF PROBLEM: The 2-implant mandibular overdenture (2IMO) is a popular treatment for patients with mandibular edentulism. However, information on the influence of implant positions on crestal strain is lacking. PURPOSE: The purpose of this in vitro study was to evaluate the crestal strain around 2 implants to support mandibular overdentures when placed at different positions. MATERIAL AND METHODS: Edentulous mandibles were 3-dimensionally (3D) designed separately with 2 holes for implant placement at similar distances of 5, 10, 15, and 20 mm from the midline, resulting in 4 study conditions. The complete denture models were 3D designed and printed from digital imaging and communications in medicine (DICOM) images after scanning the patient's denture. Two 4.3×12-mm dummy implants were placed in the preplanned holes. Two linear strain gauges were attached on the crest of the mesial and distal side of each implant (CH1, CH2, CH3, and CH4) and connected to a computer to record the electrical signals. Male LOCATOR attachments were attached, the mucosal layer simulated, and the denture picked up with pink female nylon caps. A unilateral and bilateral force of 100 N was maintained for 10 seconds for each model in a universal testing machine while recording the maximum strains in the DCS-100A KYOWA computer software program. Data were analyzed by using 1-way analysis of variance, the Tukey post hoc test, and the paired t test (α=.05). RESULTS: Under bilateral loading, the strain values indicated a trend with increasing distance between the implants with both right and left distal strain gauges (CH4 and CH1). The negative (-ve) values indicated the compressive force, and the positive (+ve) values indicated the tensile force being applied on the strain gauges. The strain values for CH4 ranged between -166.08 for the 5-mm and -251.58 for the 20-mm position; and for CH1 between -168.08 for the 5-mm and -297.83 for the 20-mm position. The remaining 2 mesial strain gauges for all 4 implant positions remained lower than for CH4 and CH1. Under unilateral-right loading, only the right-side distal strain gauge CH4 indicated the increasing trend in the strain values with -147.5 for the 5-mm, -157.17 for the 10-mm, -209.33 for the 15-mm, and -234.75 for the 20 mm position. The remaining 3 strain gauges CH3, CH2, and CH1 ranged between -28.33 and -107.17. For each position for both implants, significantly higher (P<.05) strain values were observed on the distal strain gauge channels CH4 and CH1 than on the mesial channels CH3 and CH2 under bilateral loading and on the right side under unilateral loading. CONCLUSIONS: Peri-implant crestal strains in the 2IMO increased by increasing the distance of the implants from the midline. The stress values progressively increased from 5 to 10 mm to 15 to 20 mm from midline, represented as lateral incisor, canine, and premolar positions. The distal side of the implants exhibits higher strains than the mesial side of the implants.


Assuntos
Implantes Dentários , Humanos , Feminino , Masculino , Revestimento de Dentadura , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário/métodos , Mandíbula/cirurgia , Impressão Tridimensional , Retenção de Dentadura
19.
Int J Oral Maxillofac Implants ; 38(6): 1135-1144, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085744

RESUMO

PURPOSE: To examine the stresses caused by different All-on-4 surgical techniques-conventional, a combination of monocortical and bicortical, bicortical, and nasal floor elevation-on the implant and the surrounding bone using 3D finite element analysis (FEA). MATERIALS AND METHODS: A 3D bone model of the atrophic maxilla was created based on CT imaging of the fully edentulous adult patient. All implants used in the models were 4 mm in diameter, and the length was 13 mm in the anterior and 15 mm in the posterior. Implants were applied to four different atrophic maxillary models with the All-on-4 technique: anterior and posterior monocortical implants in the first model, anterior monocortical and posterior bicortical in the second model, anterior and posterior bicortical in the third model, and anterior and posterior bicortical with nasal floor elevation in the fourth model. Eight linear analyses were performed by applying force from both vertical and 45-degree oblique directions to the four models prepared in our study. RESULTS: When the cortical and cancellous bone around the anterior implants was examined, it was observed that the oblique and vertical loading conditions and the stresses around the implant were similar in all models. When the posterior implants were examined, model 1 (ie, anterior and posterior monocortical implants) showed the greatest oblique compression, vertical compression, and vertical tension forces. According to the Von Mises stress (VMS) analysis results for anterior and posterior implants, higher values were observed in model 1 compared to models 3 and 4 under oblique and vertical forces. It was observed that bicortical placement of the implants reduced the stresses on the bone and implant-abutment system but had no significant effect on the stress on the bar. CONCLUSIONS: According to the results of our study, in the All-on-4 technique, bicortical placement of the implants reduced the stresses on the bone and implant when the anatomical limitations allowed. In addition, nasal floor elevation can be applied in the atrophic maxilla in appropriate indications.


Assuntos
Implantes Dentários , Humanos , Análise de Elementos Finitos , Maxila/diagnóstico por imagem , Maxila/cirurgia , Estresse Mecânico , Análise do Estresse Dentário/métodos , Fenômenos Biomecânicos , Planejamento de Prótese Dentária
20.
BMC Oral Health ; 23(1): 982, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066586

RESUMO

BACKGROUND: The aim of this study was to compare the microstrain transmitted to peri-implant tissues of implant-assisted mandibular overdentures using two different low-profile attachment designs; OT- Equator attachment with and without bar attachment. MATERIALS AND METHODS: A completely edentulous epoxy resin mandibular model was used, in which two parallel dental implants were inserted at the canine region bilaterally and one in the middle. Sixteen identical complete edentulous mandibular overdentures were fabricated following conventional, standardized techniques and were divided equally between two groups according to the design and placement of the OT-Equator. Group A implants were kept solitary with an OT-Equator attachment, while group B implants were kept splinted with a bar associated with two mini-OT-Equator attachments in between. Sixteen identical mandibular complete overdentures were constructed, to which attachments were picked up. The difference in stress distribution was measured using strain gauges and compared between the two studied groups. A vertical load of 100 N using the universal testing machine was applied unilaterally on the left mesial fossae of the mandibular first molar and bilaterally on the bar attached to the mandibular premolar molar region of the overdentures. Statistical analysis was conducted using IBM SPSS version 28. Normality was checked by using the Shapiro-Wilk test and normality plots. The Mann-Whitney U test was then used to analogize the groups. RESULTS: There was a statistically significant difference between groups A and B upon application of vertical unilateral and bilateral loadings of 100 N, with mean microstrain values of P 0.05. Group A (OT-Equator attachment) showed lower strain values than Group B (OT-Equator bar attachment) upon application of vertical, unilateral, and bilateral loadings of 100 N. CONCLUSIONS: Implant-assisted mandibular overdenture with a solitary attachment is associated with lower microstrain values around the implants after application of unilateral and bilateral vertical loadings of 100 N.


Assuntos
Implantes Dentários , Boca Edêntula , Humanos , Revestimento de Dentadura , Prótese Dentária Fixada por Implante , Mandíbula , Retenção de Dentadura , Análise do Estresse Dentário/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA